An experimental and modelling study of dual fuel aqueous ammonia and diesel combustion in a single cylinder compression ignition engine

نویسندگان

چکیده

The ability of ammonia to act as a hydrogen carrier, without the drawbacks gas-storage costs and low stability-renders it potential solution decarbonisation transport. This study combines both modelling experimental techniques determine effect varying degree aspiration ammonium hydroxide (NH4OH) solution, at different engine loads, in combustion compression ignition engine. Ignition delay was extended injection increased, causing an increase peak in-cylinder temperature, but generally lower quality-increasing incomplete products, while decreasing particle size. higher temperatures correlated with nitrous oxide (NOx) emissions exhaust, though fuel-bound nitrogen apparent. Chemical kinetic equivalent conditions found increasing levels unburnt greater aspiration. Moreover, ignitability NH4OH improve simulations substituting diesel peroxide direct injection.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the effects of fuel injection strategies in a dual-fuel diesel-H2 compression ignition engine

In this computational research, the separate and simultaneous impacts of diesel direct injection timing, fuel spraying cone angle, and hydrogen gas addition on combustion characteristics, output emissions, and performance in a single-cylinder direct injection diesel engine was studied. In order to conduct the simulations, valid and reliable models for combustion, break-up, and for turbulence wa...

متن کامل

Toward an Improvement of Natural Gas-diesel Dual Fuel Engine Operation at Part Load Condition by Detail CFD Simulation

Natural gas-diesel dual fuel combustion is a beneficial strategy for achieving high efficient and low emissions operation in compression ignition engines, especially in genset application heavy duty diesel engine at rated power. This study aims to investigate a dual fuel engine performance and emissions using premixed natural gas and early direct injection of diesel fuel. Due to the different r...

متن کامل

Modelling and Experimental Validation of Combustion in Straight Inoculation Compression Ignition Engine Fuelled with Diesel and Jatropha Methyl Ester Blend

An incorporated arithmetical model has been urbanized and investigated for CFD replication of a solitary cylinder, four stroke, straight inoculation, compressed ignition diesel engine of 3.5 kW for in-cylinder combustion analysis and authenticated under engine simulations at full load functioning conditions with foundation fuel diesel and 10% JME (volume basis) blend with diesel at invariable s...

متن کامل

Combustion Characteristics of a Diesel-hydrogen Dual Fuel Engine

Among the alternative fuels, hydrogen shows great potential in the near future. In the present study, hydrogen utilization as diesel engine fuel was investigated. Hydrogen can not be used directly in a diesel engine due to its autoignition temperature higher than that of diesel fuel. One alternative method is to use hydrogen in enrichment or induction. To investigate the combustion characterist...

متن کامل

Numerical study of the effect of fuel injection timing on the ignition delay, performance parameters and exhaust emission of gas/dual fuel diesel engine using Computational Fluid Dynamics

Today, due to the various usage of compression ignition engines in urban transportation, as well as the need to reduce exhaust emissions and control fuel consumption, the use of alternative fuels has become common in diesel engines. Gaseous fuel is one of the most common alternative fuels that can be used in diesel engines. The utilization of alternative fuels in compression ignition engines re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Hydrogen Energy

سال: 2021

ISSN: ['0360-3199', '1879-3487']

DOI: https://doi.org/10.1016/j.ijhydene.2021.08.089